Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(10): e2313312121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38412128

RESUMEN

Somatic mutations potentially play a role in plant evolution, but common expectations pertaining to plant somatic mutations remain insufficiently tested. Unlike in most animals, the plant germline is assumed to be set aside late in development, leading to the expectation that plants accumulate somatic mutations along growth. Therefore, several predictions were made on the fate of somatic mutations: mutations have generally low frequency in plant tissues; mutations at high frequency have a higher chance of intergenerational transmission; branching topology of the tree dictates mutation distribution; and exposure to UV (ultraviolet) radiation increases mutagenesis. To provide insights into mutation accumulation and transmission in plants, we produced two high-quality reference genomes and a unique dataset of 60 high-coverage whole-genome sequences of two tropical tree species, Dicorynia guianensis (Fabaceae) and Sextonia rubra (Lauraceae). We identified 15,066 de novo somatic mutations in D. guianensis and 3,208 in S. rubra, surprisingly almost all found at low frequency. We demonstrate that 1) low-frequency mutations can be transmitted to the next generation; 2) mutation phylogenies deviate from the branching topology of the tree; and 3) mutation rates and mutation spectra are not demonstrably affected by differences in UV exposure. Altogether, our results suggest far more complex links between plant growth, aging, UV exposure, and mutation rates than commonly thought.


Asunto(s)
Fabaceae , Lauraceae , Animales , Árboles/genética , Mutación , Tasa de Mutación
2.
Mol Ecol ; 32(22): 5944-5958, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37815414

RESUMEN

Next-generation biomonitoring proposes to combine machine-learning algorithms with environmental DNA data to automate the monitoring of the Earth's major ecosystems. In the present study, we searched for molecular biomarkers of tree water status to develop next-generation biomonitoring of forest ecosystems. Because phyllosphere microbial communities respond to both tree physiology and climate change, we investigated whether environmental DNA data from tree phyllosphere could be used as molecular biomarkers of tree water status in forest ecosystems. Using an amplicon sequencing approach, we analysed phyllosphere microbial communities of four tree species (Quercus ilex, Quercus robur, Pinus pinaster and Betula pendula) in a forest experiment composed of irrigated and non-irrigated plots. We used these microbial community data to train a machine-learning algorithm (Random Forest) to classify irrigated and non-irrigated trees. The Random Forest algorithm detected tree water status from phyllosphere microbial community composition with more than 90% accuracy for oak species, and more than 75% for pine and birch. Phyllosphere fungal communities were more informative than phyllosphere bacterial communities in all tree species. Seven fungal amplicon sequence variants were identified as candidates for the development of molecular biomarkers of water status in oak trees. Altogether, our results show that microbial community data from tree phyllosphere provides information on tree water status in forest ecosystems and could be included in next-generation biomonitoring programmes that would use in situ, real-time sequencing of environmental DNA to help monitor the health of European temperate forest ecosystems.


Asunto(s)
ADN Ambiental , Microbiota , Pinus , Monitoreo Biológico , Betula , Microbiota/genética
3.
Sci Rep ; 13(1): 622, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635358

RESUMEN

It has been shown that living in risky environments, as well as having a risky occupation, can moderate risk-tolerance. Despite the involvement of dopamine in the expectation of reward described by neurobiologists, a GWAS study was not able to demonstrate a genetic contribution of genes involved in the dopaminergic pathway in risk attitudes and gene candidate studies gave contrasting results. We test the possibility that a genetic effect of the DRD4-7R allele in risk-taking behavior could be modulated by environmental factors. We show that the increase in risk-tolerance due to the 7R allele is independent of the environmental risk in two populations in Northern Senegal, one of which is exposed to a very high risk due to dangerous fishing.


Asunto(s)
Dopamina , Receptores de Dopamina D4 , Alelos , Genotipo , Receptores de Dopamina D4/genética , Senegal , Humanos
4.
Nutrients ; 13(11)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34836316

RESUMEN

Patients with obesity are known to exhibit gut microbiota dysbiosis and memory deficits. Bariatric surgery (BS) is currently the most efficient anti-obesity treatment and may improve both gut dysbiosis and cognition. However, no study has investigated association between changes of gut microbiota and cognitive function after BS. We prospectively evaluated 13 obese patients on anthropometric data, memory functions, and gut microbiota-mycobiota before and six months after BS. The Rey Auditory Verbal Learning Test (AVLT) and the symbol span (SS) of the Weschler Memory Scale were used to assess verbal and working memory, respectively. Fecal microbiota and mycobiota were longitudinally analyzed by 16S and ITS2 rRNA sequencing respectively. AVLT and SS scores were significantly improved after BS (AVLT scores: 9.7 ± 1.7 vs. 11.2 ± 1.9, p = 0.02, and SS scores: 9.7 ± 23.0 vs. 11.6 ± 2.9, p = 0.05). An increase in bacterial alpha-diversity, and Ruminococcaceae, Prevotella, Agaricus, Rhodotorula, Dipodascus, Malassezia, and Mucor were significantly associated with AVLT score improvement after BS, while an increase in Prevotella and a decrease in Clostridium, Akkermansia, Dipodascus and Candida were linked to SS scores improvement. We identified several changes in the microbial communities that differ according to the improvement of either the verbal or working memories, suggesting a complex gut-brain-axis that evolves after BS.


Asunto(s)
Cirugía Bariátrica , Microbioma Gastrointestinal , Memoria , Micobioma , Obesidad Mórbida/cirugía , Adolescente , Adulto , Anciano , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Heces/microbiología , Femenino , Hongos/crecimiento & desarrollo , Humanos , Masculino , Persona de Mediana Edad , Obesidad Mórbida/microbiología , Obesidad Mórbida/psicología , Proyectos Piloto , Estudios Prospectivos , Adulto Joven
5.
Evol Appl ; 13(10): 2772-2790, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33294022

RESUMEN

Most existing forests are subjected to natural and human-mediated selection pressures, which have increased due to climate change and the increasing needs of human societies for wood, fibre and fuel resources. It remains largely unknown how these pressures trigger evolutionary changes. We address this issue here for temperate European oaks (Quercus petraea and Q. robur), which grow in mixed stands, under even-aged management regimes. We screened numerous functional traits for univariate selection gradients and for expected and observed genetic changes over two successive generations. In both species, growth, leaf morphology and physiology, and defence-related traits displayed significant selection gradients and predicted shifts, whereas phenology, water metabolism, structure and resilience-related traits did not. However, the direction of the selection response and the potential for adaptive evolution differed between the two species. Quercus petraea had a much larger phenotypic and genetic variance of fitness than Q. robur. This difference raises concerns about the adaptive response of Q. robur to contemporary selection pressures. Our investigations suggest that Q. robur will probably decline steadily, particularly in mixed stands with Q. petraea, consistent with the contrasting demographic dynamics of the two species.

6.
PeerJ ; 8: e9085, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411534

RESUMEN

Application of high-throughput sequencing technologies to microsatellite genotyping (SSRseq) has been shown to remove many of the limitations of electrophoresis-based methods and to refine inference of population genetic diversity and structure. We present here a streamlined SSRseq development workflow that includes microsatellite development, multiplexed marker amplification and sequencing, and automated bioinformatics data analysis. We illustrate its application to five groups of species across phyla (fungi, plant, insect and fish) with different levels of genomic resource availability. We found that relying on previously developed microsatellite assay is not optimal and leads to a resulting low number of reliable locus being genotyped. In contrast, de novo ad hoc primer designs gives highly multiplexed microsatellite assays that can be sequenced to produce high quality genotypes for 20-40 loci. We highlight critical upfront development factors to consider for effective SSRseq setup in a wide range of situations. Sequence analysis accounting for all linked polymorphisms along the sequence quickly generates a powerful multi-allelic haplotype-based genotypic dataset, calling to new theoretical and analytical frameworks to extract more information from multi-nucleotide polymorphism marker systems.

7.
Ecol Evol ; 9(12): 7017-7029, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31380030

RESUMEN

The use of genetic information is crucial in conservation programs for the establishment of breeding plans and for the evaluation of restocking success. Short tandem repeats (STRs) have been the most widely used molecular markers in such programs, but next-generation sequencing approaches have prompted the transition to genome-wide markers such as single nucleotide polymorphisms (SNPs). Until now, most sturgeon species have been monitored using STRs. The low diversity found in the critically endangered European sturgeon (Acipenser sturio), however, makes its future genetic monitoring challenging, and the current resolution needs to be increased. Here, we describe the discovery of a highly informative set of 79 SNPs using double-digest restriction-associated DNA (ddRAD) sequencing and its validation by genotyping using the MassARRAY system. Comparing with STRs, the SNP panel proved to be highly efficient and reproducible, allowing for more accurate parentage and kinship assignments' on 192 juveniles of known pedigree and 40 wild-born adults. We explore the effectiveness of both markers to estimated relatedness and inbreeding, using simulated and empirical datasets. Interestingly, we found significant correlations between STRs and SNPs at individual heterozygosity and inbreeding that give support to a reasonable representation of whole genome diversity for both markers. These results are useful for the conservation program of A. sturio in building a comprehensive studbook, which will optimize conservation strategies. This approach also proves suitable for other case studies in which highly discriminatory genetic markers are needed to assess parentage and kinship.

8.
Front Plant Sci ; 9: 996, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30057586

RESUMEN

Anticipating the evolutionary responses of long-lived organisms, such as trees, to environmental changes, requires the assessment of genetic variation of adaptive traits in natural populations. To this end, high-density markers are needed to calculate genomic relatedness between individuals allowing to estimate the genetic variance of traits in wild populations. We designed a targeted capture-based, next-generation sequencing assay based on the highly heterozygous pedunculate oak (Quercus robur) reference genome, for the sequencing of 3 Mb of genic and intergenic regions. Using a mixed stand of 293 Q. robur and Q. petraea genotypes we successfully captured over 97% of the target sequences, corresponding to 0.39% of the oak genome, with sufficient depth (97×) for the detection of about 190,000 SNPs evenly spread over the targeted regions. We validated the technique by evaluating its reproducibility, and comparing the genomic relatedness of trees with their known pedigree relationship. We explored the use of the technique on other related species and highlighted the advantages and limitations of this approach. We found that 92.07% of target sequences in Q. suber and 70.36% of sequences in Fagus sylvatica were captured. We used this SNP resource to estimate genetic relatedness in the mixed oak stand. Mean pairwise genetic relatedness was low within each species with a few values exceeding 0.25 (half-sibs) or 0.5 (full-sibs). Finally, we applied the technique to a long-standing issue in population genetics of trees regarding the relationship between inbreeding and components of fitness. We found very weak signals for inbreeding depression for reproductive success and no signal for growth within both species.

9.
Nat Plants ; 4(7): 440-452, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29915331

RESUMEN

Oaks are an important part of our natural and cultural heritage. Not only are they ubiquitous in our most common landscapes1 but they have also supplied human societies with invaluable services, including food and shelter, since prehistoric times2. With 450 species spread throughout Asia, Europe and America3, oaks constitute a critical global renewable resource. The longevity of oaks (several hundred years) probably underlies their emblematic cultural and historical importance. Such long-lived sessile organisms must persist in the face of a wide range of abiotic and biotic threats over their lifespans. We investigated the genomic features associated with such a long lifespan by sequencing, assembling and annotating the oak genome. We then used the growing number of whole-genome sequences for plants (including tree and herbaceous species) to investigate the parallel evolution of genomic characteristics potentially underpinning tree longevity. A further consequence of the long lifespan of trees is their accumulation of somatic mutations during mitotic divisions of stem cells present in the shoot apical meristems. Empirical4 and modelling5 approaches have shown that intra-organismal genetic heterogeneity can be selected for6 and provides direct fitness benefits in the arms race with short-lived pests and pathogens through a patchwork of intra-organismal phenotypes7. However, there is no clear proof that large-statured trees consist of a genetic mosaic of clonally distinct cell lineages within and between branches. Through this case study of oak, we demonstrate the accumulation and transmission of somatic mutations and the expansion of disease-resistance gene families in trees.


Asunto(s)
Genoma de Planta/genética , Quercus/genética , Evolución Biológica , ADN de Plantas/genética , Variación Genética/genética , Longevidad/genética , Mutación , Filogenia , Análisis de Secuencia de ADN
10.
Mol Ecol ; 27(5): 1138-1154, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29412519

RESUMEN

Reconstructing the colonization and demographic dynamics that gave rise to extant forests is essential to forecasts of forest responses to environmental changes. Classical approaches to map how population of trees changed through space and time largely rely on pollen distribution patterns, with only a limited number of studies exploiting DNA molecules preserved in wooden tree archaeological and subfossil remains. Here, we advance such analyses by applying high-throughput (HTS) DNA sequencing to wood archaeological and subfossil material for the first time, using a comprehensive sample of 167 European white oak waterlogged remains spanning a large temporal (from 550 to 9,800 years) and geographical range across Europe. The successful characterization of the endogenous DNA and exogenous microbial DNA of 140 (~83%) samples helped the identification of environmental conditions favouring long-term DNA preservation in wood remains, and started to unveil the first trends in the DNA decay process in wood material. Additionally, the maternally inherited chloroplast haplotypes of 21 samples from three periods of forest human-induced use (Neolithic, Bronze Age and Middle Ages) were found to be consistent with those of modern populations growing in the same geographic areas. Our work paves the way for further studies aiming at using ancient DNA preserved in wood to reconstruct the micro-evolutionary response of trees to climate change and human forest management.


Asunto(s)
ADN Antiguo/química , Análisis de Secuencia de ADN/métodos , Madera , Biodiversidad , Evolución Biológica , Cambio Climático , Bosques , Quercus/genética
11.
Genome ; 60(9): 778-790, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28750176

RESUMEN

Quercus rubra has been introduced in Europe since the end of the 17th century. It is widely distributed today across this continent and considered invasive in some countries. Here, we investigated the distribution of genetic diversity of both native and introduced populations with the aim of tracing the origin of introduced populations. A large sampling of 883 individuals from 73 native and 38 European locations were genotyped at 69 SNPs. In the natural range, we found a continuous geographic gradient of variation with a predominant latitudinal component. We explored the existence of ancestral populations by performing Bayesian clustering analysis and found support for two or three ancestral genetic clusters. Approximate Bayesian Computations analyses based on these two or three clusters support recent extensive secondary contacts between them, suggesting that present-day continuous genetic variation resulted from recent admixture. In the introduced range, one main genetic cluster was not recovered in Europe, suggesting that source populations were preferentially located in the northern part of the natural distribution. However, our results cannot refute the introduction of populations from the southern states that did not survive in Europe.


Asunto(s)
Especies Introducidas , Quercus/genética , Teorema de Bayes , ADN de Plantas , Europa (Continente) , Variación Genética , Técnicas de Genotipaje , Polimorfismo de Nucleótido Simple , Estados Unidos
12.
New Phytol ; 215(1): 126-139, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28444962

RESUMEN

Large-scale tree distribution changes have received considerable attention but underlying demo-genetic mechanisms are less well documented. We used a diachronic approach to track species shifts in a mixed oak stand (Quercus petraea-Quercus robur) at a fine spatiotemporal scale. Species assignment was made using single nucleotide polymorphism (SNP) fingerprints employing clustering and parentage analysis. Mating patterns and reproductive success were assessed by parentage analysis. Plot-based inventories of soil parameters and sapling densities provided ecological and demographic information, respectively. Sapling density and reproductive success was higher in Q. petraea than in Q. robur, and were correlated with a spatial expansion of Q. petraea (50% to 67% of the area). Admixed trees resulting from hybridization and backcrossing between the two species were more frequent under the Q. robur canopy. We suspect that species' differential responses to ongoing environmental changes and interspecific competition are the predominant factors accounting for the recruitment success of Q. petraea, while human interference, differential reproduction and hybridization (and backcrossings) are probably of more limited importance. We anticipate in mixed Q. petraea-Q. robur stands, under current ongoing environmental change, that these processes will be enhanced, at least in the western part of the distribution of the two species.


Asunto(s)
Quercus/fisiología , Dermatoglifia del ADN , Ambiente , Hibridación Genética , Endogamia , Polimorfismo de Nucleótido Simple , Dinámica Poblacional , Quercus/clasificación , Quercus/genética , Reproducción , Especificidad de la Especie
14.
PLoS One ; 11(11): e0165323, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27806077

RESUMEN

BACKGROUND: Increasing our understanding of the genetic architecture of complex traits, through analyses of genotype-phenotype associations and of the genes/polymorphisms accounting for trait variation, is crucial, to improve the integration of molecular markers into forest tree breeding. In this study, two full-sib families and one breeding population of maritime pine were used to identify quantitative trait loci (QTLs) for height growth and stem straightness, through linkage analysis (LA) and linkage disequilibrium (LD) mapping approaches. RESULTS: The populations used for LA consisted of two unrelated three-generation full-sib families (n = 197 and n = 477). These populations were assessed for height growth or stem straightness and genotyped for 248 and 217 markers, respectively. The population used for LD mapping consisted of 661 founders of the first and second generations of the breeding program. This population was phenotyped for the same traits and genotyped for 2,498 single-nucleotide polymorphism (SNP) markers corresponding to 1,652 gene loci. The gene-based reference genetic map of maritime pine was used to localize and compare the QTLs detected by the two approaches, for both traits. LA identified three QTLs for stem straightness and two QTLs for height growth. The LD study yielded seven significant associations (P ≤ 0.001): four for stem straightness and three for height growth. No colocalisation was found between QTLs identified by LA and SNPs detected by LD mapping for the same trait. CONCLUSIONS: This study provides the first comparison of LA and LD mapping approaches in maritime pine, highlighting the complementary nature of these two approaches for deciphering the genetic architecture of two mandatory traits of the breeding program.


Asunto(s)
Estudios de Asociación Genética/métodos , Pinus/fisiología , Sitios de Carácter Cuantitativo , ADN de Plantas/análisis , Ligamiento Genético , Pinus/genética , Fitomejoramiento , Polimorfismo de Nucleótido Simple
15.
DNA Res ; 23(2): 115-24, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27013549

RESUMEN

We developed the densest single-nucleotide polymorphism (SNP)-based linkage genetic map to date for the genus Quercus An 8k gene-based SNP array was used to genotype more than 1,000 full-sibs from two intraspecific and two interspecific full-sib families of Quercus petraea and Quercus robur A high degree of collinearity was observed between the eight parental maps of the two species. A composite map was then established with 4,261 SNP markers spanning 742 cM over the 12 linkage groups (LGs) of the oak genome. Nine genomic regions from six LGs displayed highly significant distortions of segregation. Two main hypotheses concerning the mechanisms underlying segregation distortion are discussed: genetic load vs. reproductive barriers. Our findings suggest a predominance of pre-zygotic to post-zygotic barriers.


Asunto(s)
Mapeo Cromosómico , Genoma de Planta , Polimorfismo de Nucleótido Simple , Quercus/genética , Ligamiento Genético
16.
Plant Sci ; 242: 108-119, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26566829

RESUMEN

A two-generation maritime pine (Pinus pinaster Ait.) breeding population (n=661) was genotyped using 2500 SNP markers. The extent of linkage disequilibrium and utility of genomic selection for growth and stem straightness improvement were investigated. The overall intra-chromosomal linkage disequilibrium was r(2)=0.01. Linkage disequilibrium corrected for genomic relationships derived from markers was smaller (rV(2)=0.006). Genomic BLUP, Bayesian ridge regression and Bayesian LASSO regression statistical models were used to obtain genomic estimated breeding values. Two validation methods (random sampling 50% of the population and 10% of the progeny generation as validation sets) were used with 100 replications. The average predictive ability across statistical models and validation methods was about 0.49 for stem sweep, and 0.47 and 0.43 for total height and tree diameter, respectively. The sensitivity analysis suggested that prior densities (variance explained by markers) had little or no discernible effect on posterior means (residual variance) in Bayesian prediction models. Sampling from the progeny generation for model validation increased the predictive ability of markers for tree diameter and stem sweep but not for total height. The results are promising despite low linkage disequilibrium and low marker coverage of the genome (∼1.39 markers/cM).


Asunto(s)
Genoma de Planta/genética , Genómica/métodos , Pinus/genética , Fitomejoramiento/métodos , Algoritmos , Teorema de Bayes , Cromosomas de las Plantas/genética , ADN de Plantas/análisis , ADN de Plantas/genética , Genotipo , Técnicas de Genotipaje/métodos , Desequilibrio de Ligamiento , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Selección Artificial
17.
J Exp Bot ; 65(17): 4757-68, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24987014

RESUMEN

To meet the increasing demand of wood biomass worldwide in the context of climate change, developing improved forest tree varieties for high productivity in water-limited conditions is becoming a major issue. This involves breeding for genotypes combining high growth and moderate water loss and thus high water-use efficiency (WUE). The present work provides original data about the genetics of intrinsic WUE (the ratio between net CO2 assimilation rate and stomatal conductance, also estimated by carbon isotope composition of plant material; δ(13)C) and its relation to growth in Pinus pinaster Ait. First, heritability for δ(13)C was estimated (0.29) using a 15-year-old progeny trial (Landes provenance), with no significant differences among three sites contrasting in water availability. High intersite correlations (0.63-0.91) and significant but low genotype-environment interactions were detected. Secondly, the genetic architectures of δ(13)C and growth were studied in a three-generation inbred pedigree, introducing the genetic background of a more-drought-adapted parent (Corsican provenance), at ages of 2 years (greenhouse) and 9 years (plantation). One of the quantitative trait loci (QTLs) identified in the field experiment, explaining 67% of the phenotypic variance, was also found among the QTLs detected in the greenhouse experiment, where it colocalized with QTLs for intrinsic WUE and stomatal conductance. This work was able to show that higher WUE was not genetically linked to less growth, allowing thus genetic improvement of water use. As far as is known, the heritability and QTL effects estimated here are based on the highest number of genotypes measured to date.


Asunto(s)
Pinus/crecimiento & desarrollo , Pinus/genética , Selección Genética , Agua/metabolismo , Cruzamiento , Isótopos de Carbono/metabolismo , Cambio Climático , Francia , Pinus/metabolismo , Árboles/genética , Árboles/crecimiento & desarrollo , Árboles/metabolismo
18.
BMC Genomics ; 15: 171, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24581176

RESUMEN

BACKGROUND: The accessibility of high-throughput genotyping technologies has contributed greatly to the development of genomic resources in non-model organisms. High-density genotyping arrays have only recently been developed for some economically important species such as conifers. The potential for using genomic technologies in association mapping and breeding depends largely on the genome wide patterns of diversity and linkage disequilibrium in current breeding populations. This study aims to deepen our knowledge regarding these issues in maritime pine, the first species used for reforestation in south western Europe. RESULTS: Using a new map merging algorithm, we first established a 1,712 cM composite linkage map (comprising 1,838 SNP markers in 12 linkage groups) by bringing together three already available genetic maps. Using rigorous statistical testing based on kernel density estimation and resampling we identified cold and hot spots of recombination. In parallel, 186 unrelated trees of a mass-selected population were genotyped using a 12k-SNP array. A total of 2,600 informative SNPs allowed to describe historical recombination, genetic diversity and genetic structure of this recently domesticated breeding pool that forms the basis of much of the current and future breeding of this species. We observe very low levels of population genetic structure and find no evidence that artificial selection has caused a reduction in genetic diversity. By combining these two pieces of information, we provided the map position of 1,671 SNPs corresponding to 1,192 different loci. This made it possible to analyze the spatial pattern of genetic diversity (He) and long distance linkage disequilibrium (LD) along the chromosomes. We found no particular pattern in the empirical variogram of He across the 12 linkage groups and, as expected for an outcrossing species with large effective population size, we observed an almost complete lack of long distance LD. CONCLUSIONS: These results are a stepping stone for the development of strategies for studies in population genomics, association mapping and genomic prediction in this economical and ecologically important forest tree species.


Asunto(s)
Variación Genética , Genoma de Planta , Desequilibrio de Ligamiento , Pinus/genética , Algoritmos , Mapeo Cromosómico , Frecuencia de los Genes , Ligamiento Genético , Genotipo , Técnicas de Genotipaje , Polimorfismo de Nucleótido Simple
19.
BMC Biol ; 11: 50, 2013 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-23597128

RESUMEN

BACKGROUND: The availability of a large expressed sequence tags (EST) resource and recent advances in high-throughput genotyping technology have made it possible to develop highly multiplexed SNP arrays for multi-objective genetic applications, including the construction of meiotic maps. Such approaches are particularly useful in species with a large genome size, precluding the use of whole-genome shotgun assembly with current technologies. RESULTS: In this study, a 12 k-SNP genotyping array was developed for maritime pine from an extensive EST resource assembled into a unigene set. The offspring of three-generation outbred and inbred mapping pedigrees were then genotyped. The inbred pedigree consisted of a classical F2 population resulting from the selfing of a single inter-provenance (Landes x Corsica) hybrid tree, whereas the outbred pedigree (G2) resulted from a controlled cross of two intra-provenance (Landes x Landes) hybrid trees. This resulted in the generation of three linkage maps based on SNP markers: one from the parental genotype of the F2 population (1,131 markers in 1,708 centimorgan (cM)), and one for each parent of the G2 population (1,015 and 1,110 markers in 1,447 and 1,425 cM for the female and male parents, respectively). A comparison of segregation patterns in the progeny obtained from the two types of mating (inbreeding and outbreeding) led to the identification of a chromosomal region carrying an embryo viability locus with a semi-lethal allele. Following selfing and segregation, zygote mortality resulted in a deficit of Corsican homozygous genotypes in the F2 population. This dataset was also used to study the extent and distribution of meiotic recombination along the length of the chromosomes and the effect of sex and/or genetic background on recombination. The genetic background of trees in which meiotic recombination occurred was found to have a significant effect on the frequency of recombination. Furthermore, only a small proportion of the recombination hot- and cold-spots were common to all three genotypes, suggesting that the spatial pattern of recombination was genetically variable. CONCLUSION: This study led to the development of classical genomic tools for this ecologically and economically important species. It also identified a chromosomal region bearing a semi-lethal recessive allele and demonstrated the genetic variability of recombination rate over the genome.


Asunto(s)
Mapeo Cromosómico , Genoma de Planta/genética , Endogamia , Meiosis/genética , Pinus/genética , Recombinación Genética/genética , Alelos , Segregación Cromosómica/genética , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , Genes de Plantas/genética , Ligamiento Genético , Sitios Genéticos/genética , Marcadores Genéticos , Técnicas de Genotipaje , Polimorfismo de Nucleótido Simple/genética , Reproducibilidad de los Resultados
20.
BMC Genomics ; 13: 527, 2012 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-23036012

RESUMEN

BACKGROUND: Pinus pinaster Ait. is a major resin producing species in Spain. Genetic linkage mapping can facilitate marker-assisted selection (MAS) through the identification of Quantitative Trait Loci and selection of allelic variants of interest in breeding populations. In this study, we report annotated genetic linkage maps for two individuals (C14 and C15) belonging to a breeding program aiming to increase resin production. We use different types of DNA markers, including last-generation molecular markers. RESULTS: We obtained 13 and 14 linkage groups for C14 and C15 maps, respectively. A total of 211 and 215 markers were positioned on each map and estimated genome length was between 1,870 and 2,166 cM respectively, which represents near 65% of genome coverage. Comparative mapping with previously developed genetic linkage maps for P. pinaster based on about 60 common markers enabled aligning linkage groups to this reference map. The comparison of our annotated linkage maps and linkage maps reporting QTL information revealed 11 annotated SNPs in candidate genes that co-localized with previously reported QTLs for wood properties and water use efficiency. CONCLUSIONS: This study provides genetic linkage maps from a Spanish population that shows high levels of genetic divergence with French populations from which segregating progenies have been previously mapped. These genetic maps will be of interest to construct a reliable consensus linkage map for the species. The importance of developing functional genetic linkage maps is highlighted, especially when working with breeding populations for its future application in MAS for traits of interest.


Asunto(s)
Mapeo Cromosómico , Cromosomas de las Plantas , Marcadores Genéticos , Genoma de Planta , Repeticiones de Microsatélite , Pinus/genética , Alelos , Cruzamiento , Ligamiento Genético , Genética de Población , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...